

Technique

- Placido Rings monitored with a video camera
 - Projection of concentric rings to the cornea
 - Distorsion of rings will be mathematically evaluated
 - Reflexion on the cornea are the basis for calculation
 - No measurements in the very center of the cornea, due to the position of the video camera (interpolated data)

Technique Medmont

- 9,600 measurement points and 102,000 analyze points
 - Coverage extends from a minimum ring diameter of 0.25mm to beyond 10mm
 - Accuracy < 0.1 Diopters

Technique Oculus

- 22'000 measuring points
 - Nose and forehead make shadows and reduce the amount of measure points
 - Only about the central 8mm diameter are really measured
 - Accuracy +/-0.1D

Diagnostic Software (Maping)

- The software provides in general 3 different corneal maping possibilities (axial / tangential / elevation)
- Depending on the goal, each mapping offers very specific advantages
 - The next slides shows always the same Px

Diagnostic Software (Fourier)

- Fourier Analysis
 - Mathematical separation of the topographic map into individual components
 - Optical aberration (spherical component, decentration or decentration with spherical component, regular astigmatism, irregularities or irregularities with spherical component)

freedom to see

Diagnostic Software (Indices)

- Automatic identification giving cornea indices and topographical classification of cornea (e.g. stage 2 keratoconus, abnormal cornea, etc)
 - New state of the art in communication with ophthalmologists

Diagnostic Software (Zernike)

- Higher Order Aberrations can be visualized and analyzed by Software
 - Aberration Index above 1.50 are suspeces

Diagnostic Software (Dry Eye)

• New: Tear Meniscus Tool (TF Scan)

Fitting Software

- The software automatically suggests a CL from the integrated database and calculates a fluorescein pattern
 - Geometry and overall diameter can be manipulated individually on computer, without having every single lens tested on the eye
 - Data need to be confirmed by having one defined contact lens interpreted on the eye

Keratoconus (Scarring)

- CLEK Study 1994 2002 (1'209 PX)
 - -32% of flat fitted Px by eight years vs. 14% steep fitted
- Korb et al, 1982 (7 Px)
 - -57% flat vs. 0% steep after 12 month
- Maguen et al, 1983
 - -25% flat by 3 years had "significant staining"

Keratoconus

- Quadrant-specific Design
 - The idea is to fit the lens in every quadrant as good as possible to the origin cornea curvature
 - The lens has inferior a black colored engraved point which must be inserted in 270°
 - The lens then will be click-in the cornea curvature

Penetrating Keratoplasty

- Example of a common problem
 - fitting a rotation symmetric small lens

Penetrating Keratoplasty

- Second try:
 - Bigger Diameter, with reverse geometry
 - Spherical optic, Periphery-toric alignment
- Periphery-toric Design
 - Horizontal Eccentricity 1.0
 - Vertical Eccentricity 0.6
- · Astigmatism of 2.4 dpt in the Periphery

Orthokeratology

- NaFI becomes visible at a thickness of 20µm (Young 1989)
 - Only way to see, what the lens has done during night in her static state under the closed eye
- Diagnostic of the cause of a problem
 - Difference map shows what actually happens to the origin cornea

freedom to see

Orthokeratology

- Use axial, tangential an refractive power difference (subtractive) maps
 - Axial Power shows the objective Rx changes
 - Tangential Power shows centration of the changes
 - Refractive Power shows objective Rx and Treatment-Zone changes

freedom to see

Orthokeratology

- Bulls-Eye is the ONLY valid and acceptable outcome
 - Good high contract sensitivity
 - Maximum Rx change with time
- · Characteristic:
 - A well-centered area of corneal flattening (Treatment Zone)
 - A circle of mid-peripheral corneal steepening
 - Little or no peripheral corneal change

freed out to see

Presbyopia

- Near-portion height measurement
 - Essential to determine the dividing line for translating bifocal contact lenses

Presbyopia

- Pupillometry
 - Graphical representation of the results: change of pupil within a span of time; minimum, medium and maximum pupil diameter including standard deviation
 - Essential for simultaneous multifocal contact lens designs
 - Possibility of comparison view for Anisokoria

freedom to see

Presbyopia • Pupillometry Left eye Pep: 5.6m Time: 51.6m Ye 8.1m Ye

