tudio bartschi

Management der Myopieprogression mittels Kontaktlinsen

reedom to see

Dr. Michael Bärtschi

PhD (Biomedicine), MSc. et M.M.E., FAAO Eyeness AG, kontaktlinsenstudio baertschi, Bern / Schweiz mbaertschi@eyeness.ch

Disclosure

None

Recognition for :

Dr. Kate Johnson and

Dr. Martin Lörtscher

Goals

- Why bother with Myopia Control?
 - Risk Profile
- Understand the science of Myopia Control
 - Central vs peripheral Retina Imaging
 - Dual Vision and Ortho-Keratology
- Putting Science into daily Praxis
 - Patient Selection and Management

Why Myopia Control?

Why Myopia Control?

	Cataract (PSCC)	Glaucoma	Retinal detachment
-1.00 to -3.00	2	4	4
-3.00 to -6.00	3	3	10
-6.oo or more	5	4	16

Lim et al, IOVS 1999; Mitchell et al, Ophthalmol 1999; The Eye Disease Case-Control Study Group, Am J Epidemiol, 1993; Beijing Rhegmatogenous Retinal Detachment Study Group, Ophthalmol 2003.

Why Myopia Control?

 Brennan (CLAE 2012) showed that slowing down the progression rate is eminent for prevention of high myopia (> - 6dpt).

Reducing myopia progression by	Reduction in frequency of high myopia
33%	73%
50%	90%

Genetics

Parents:

- One myopic parent = 2x risk
- Two myopic parents = 5-6x risk

Ethnicity:

- 20% 30% in USA, Europa, Ozeanien
- Over 80% in some parts of Asia

Morgan et al 2005, Pacella et al 1999; Zadnik 1997; Rose et al 2008, Ip et al 2008; Azizoglu et al 2011; Junghans et al 2005; Morgan et al 2005

SCIENTISTS ARE HOPING TO ISOLATE
A BIG HAND GENE TO GIVE PEOPLE
THE POWER OF FLIGHT.

chi maddan

- Environment
 - Less than 1.5hours outdoor activity PLUS
 - high near work demand more than 3hours beside school / college

Jones-Jordan et al 2010

Lack of Vitamin D?
Focusing?
Convergence?

freedom to

Central Defocus

• Peripheral Defocus (Smith et al 2007)

Relative peripheral Hyperopia

(Relative Peripheral Defocus RPD or Relative Peripheral Refractive Error RPRE)

Myopia Control Strategies

Method	Reduction in axial length grow
Atropine	30% - 77%
Monovision	48% (🗸)
Normal RGP or Hydrogels	0% - 5%
Spectacles (PAL, Bifocal)	12% - 55% (🗸)
Spectacle MyoVision (Refractive Radial Gradient)	0% - 29%
Multifocal Hydrogel (DualFocus, Proclear D, Biofinity D)	29% - 69%
Orthokeratology	32% - 100%

Monovision

- Monovision Study Design Phillips (2005)
- 13 Children (One eye full correction, the other eye max 2.00 D under correction)
- Years of age 11 13
- Monitoring
 - Cyclo Autoref
 - Ultrasound axial length

Monovision Results

- The full corrected eye was accomodating for near targets!
- Myopia Progression

N = 13	Corrected eye	Undercorrected eye	Reduction of Progression in
SER (D/yr)	-0.72 ± 0.32	-0.32 ± 0.30	56%
VCD (mm/yr)	0.29 ± 0.11	0.15 ± 0.12	48%
Time	18.		

Binocular Undercorrection

Chung et al (2002) 0.75 D undercorrection

N= 94 Age 9 -14

freedom to

Refractive Radial Gradient

- Reduction of relative peripheral Hyperopia
 - 210 Children, years 6 16
 - Cyclo autorefraction & Biometry
 - 4 Groups
 - SV Spex (n=50)
 - 3 new Typ SV
- Result: same effect on myopia progression in all 4 groups

Sankaridurg et al, 2010

Biofinity Bifocal (D)

Yellow = Distance / Red = Treatment zones

Biofinity Bifocal (D)

Multifocal Hydrogel (DualFocus, Proclear D, Biofinity D)

29% - 69%

- ✓ Good starting point for lower grade or slower progressing Myopia.
- ✓ Different Add. options. (+1.0/+1.5/+2.0/+2.5)
- ✓ Daily Wear or Extended Wear possible.

Dual Focus contact lens

(MySight Cooper)

Photopic Mesopic Child's pupil

2.00D myopic defocus

Blue = Distance / Red = Treatment zones

Anstice & Phillips (2011)

Bi-focal @ Nähe

Simultaneous Defocus Results

Study	control	Age (yrs)	n	Reduction in myopia progression (SER)	Reduction in eye elongation
Anstice & Phillips 2011	Contralateral SVCL	11-14	40	37%	49%
Lam et al. 2013	SVCL	8-13	49	25%	32%
Walline, Greiner et al 2013	Historical SVCLs	8-11	31	50%	29%

Orthokeratology

Orthokeratology Hypothesis

 Ortho-K changes the relativ peripheral defocus from Hyperopic to a Myopic

defocus

Kang & Swarbrick (2011)

Orthokeratology Results

Study	control	Age (yrs)	n	Drop -out	Reduction in axial elongation
Cho et al 2005	Specs	7 - 12	43	19%	46%
Walline et al 2009	SCLs	8 - 11	40	30%	55%
Kakita et al 2011	Specs	8 - 16	105	23%	36%
Hiraoka et al 2012	Specs	8 - 12	43	27%	31%
Santo-Rubido 2012	Specs	6 - 12	61	13%	32%
Cho & Cheung 2012	Specs	7 - 10	78	24%	43%

Multifokal Orthokeratology (MOK)

Loertscher / Phillips et al (2014)

MOK Fluorescein Pattern

Treatment Zone

Correction Zone Distance Vision

Reverse Zone

© Falco

MOK Topography

Correction Zone Distance Vision Reverse Zone **Treatment** Zone **Pupil** © Lörtscher

Phillips 2005 0.29mm

MOK Axial length

Loertscher / Phillips et al (2014)

MOK Comparison

Loertscher / Phillips et al (2014)

- ◆ Orthokeratology
- Spectacle

MOK - Choriodal Thickness

Loertscher / Phillips et al (2014)

MOK - RPR

Loertscher / Phillips et al (2014)

MOK – Theory

- Central defocus causes increasing thickness of Chorioidea
 - Cholinergic antagonists (e.g. atropine) responsible for thickening of Choriodea and prevent the development of defocus driven myopia in animals
- Central
 — Simultaneous defocus seems to have a bigger impact than peripheral defocus alone
- Additive Effect of central and peripheral defocus is possible

MOK – Fitting principles

- Fitting accordingly to normal Ortho-K
 - Distance Vision need an extra week longer to fully achieve
 - Corneal Astigmatism can be corrected up to
 4.0 D
 - 6month follow up
 - yearly exchange of contact lenses

Myopia Risks vs CL Risks

Myopia Risks vs CL Risks

	Risk per year	Lifetime risk
Retinal detachment (any)	o.oo5 to o.o3%	1 in 50 - 1 in 300 1 in 20 over -5.00D
Retinal detachment after cataract surgery	o.5 to 1.6% High myopes: up to 7%	1 in 65 - 1 in 200 1 in 14
Retinal detachment with 6/12 or worse	5 x risk in -1.00 to -3.00 12 x risk in -3.00D or more	
Glaucoma	1.5% in normal eyes 4.2% in -1.00D or more	1 in 66 1 in 24
Microbial keratitis (any)	Daily wear DD 0.02% Daily wear SiH 0.12% Extended wear 0.2%	1 in 75 1 in 13 1 in 8
Microbial keratitis with 2 line loss of BCVA	Daily wear DD 0% Daily wear SiH 0.01% Extended wear 0.03%	0 1 in 150 1 in 50

Gariano et al 2004, Ivanisevic et al 2000, Li et al 2003, Stapleton et al 2008, Mitchell et al 1999, Wilkes et al 1982, Lim et al 1999

Myopia Risks vs CL Risks

- Lifetime risk of retinal detachment in >5D myopia is 3.5x higher than MK with DD contact lenses
 - 2.5x higher with loss of BCVA with EW SiHy
- Lifetime risk of Glaucoma in >1D myope is 2x higher than risk of MK with loss of BCVA with EW SiHy

Summary

- There is evidence today that Myopia Control is working extremely well
 - Eye care practitioner are responsible to be active and to inform patients properly
- Biometry (axial eye length measurement) as the only valuable reference for Myopia control should be done yearly

Summary

 As we deal with young adults and children, proper instructions on handling, after care plan and emergency management is vital!

Darf ich Herez Fichger Derekn!tworten?

