tudio bärtschi

Peripheral fitting Concept for (R)GP's

A Paradigma shift

freedom to see

Michael Wyss

M.Sc. Optometrist FAAO kontaktlinsenstudio bärtschi, Bern / Switzerland mwyss@kontaktlinsenstudio.ch

Financial Disclosure

- Clinical Investigator
 - Abbott
 - Bausch&Lomb
 - Ciba Vision
 - Cooper
 - Falco Kontaktlinsen
 - Vistakon (Johnson&Johnson)

- Payed Consultant
 - Falco Kontaktlinsen Switzerland
 - Vistakon (Johnson&Johnson)

Current GP fitting Concepts

- Central K reading as starting point of classic
 GP design calculation
- Peripher alignment fit will achieved with multicurve or aspheric designs
 - e- value: flattening depending on difference between central K and K measurements in 30°

freedom to see

New fitting Concept

 Centration / stabilisation of GP is provided by the biggest part of alignment surface between Cornea and GP

Periphery of GP
 provides much greater
 surface than the
 central part!!

44.1mm²
23.8mm²
Ø 9.3mm
Ø 5.5mm

New fitting Concept

- Mean Goal is to achieve alignment fit in the corneal periphery
 - Improve initial comfort
 - Reduce 3-9 o' clock staining, due to reduced mechanical pressure
 - Improve centration (reduce high / low riding)
 - Improve Visual outcome

freedom to see

New fitting Concept

- Peripheral fitting Strategies need new GP designs
 - Peripheral curves need to be manipulated independently from BC, in all four quadrants
 - Lead into bigger overall diameter
 - Need higher DK Materials
 - Frequent or planned replacement schedule

Regular Corneas

- Case Report, BT, age 38, caucasian female
 - aspheric rotation symmetric GP design
 - Diameter 9.30
- Subjective Feedback
 - comfort problems
 - often foreign body under lens
 - visual fluctuation

freedom to see

Regular Corneas Freedom to see

Regular Cornea

- Objective Results
 - Highride position and BC slight steep to camouflage the toric cornea
 - Inferior edge lift, lens rocks around the horizontal meridian

Regular Cornea

- Current contact lens options:
 - Back Toric Design
 - Smaller Diameter
- Drawback:
 - Back Toric Design will induce inverse astigmatism and often leads into more expensive BiToric design
 - Smaller Diameter can lead into comfort or loosing lens problems

freedom to see

Peripher Toric Design

- Schema of a peripher toric design
 - Spherical optic zone vs toric periphery

Peripher Toric Design

- Peripheral Toricity is achieved by different flattening (e-Value) in steep and flat meridian
 - Steep meridian with zero e-value (no flattening)
 - Flat meridian free choosable e-value (standard 06)

Fitting concept

- Starting point of fitting is the steep peripheral meridian
 - Goal is to allow the peripheral curve to click into the corneal curvature
 - If the fitting fails to reach alignment here, the lens will rotate and rock around flate meridian

• Steep peripheral meridian K: 7.50mm

	Zentr. radius	Peripherer Winkel					
		10"	15°	20"	25°	30°	
Radius Nas	7.67	7.68	7.69	7.71	7.80	7.90	
Radius Temp	7.61	7.64	7.63	7.65	7.66	7.75	
Radius Inf	7.46	7.52	7.49	7.42	7.38	7.39	
Radius Sup	7.48	7.51	7.50	7.49	7.50	7.59	
Mittelwert	7,55	7.59	7.58	7.57	7.59	7.66	

• Flat peripheral meridian K: 7.85mm

	Zentr. radius	Peripherer Winkel						
		10"	15°	20"	25°	30°		
Radius Nas	7.67	7.68	7.69	7.71	7.80	7.90		
Radius Temp	7.61	7.64	7.63	7.65	7.66	7.75		
Radius Inf	7.46	7.52	7.49	7.42	7.38	7.39		
Radius Sup	7.48	7.51	7.50	7.49	7.50	7.59		
Mittelwert	7.55	7.59	7.58	7.57	7.59	7.66		

freedom to see

Fitting concept

- Rule of thumb for nE calculation
 - BC of lens = 7.50mm
 - K reading peripheral meridian = 7.85mm
 - Radius difference between BC and periphery = 0.35mm
 - Square root of 0.35mm difference = nE 0.60

- Perfect centration
- Outstanding comfort
- Fluorescein pattern: typical pooling in steep mid-periphery and alignment fit in periphery

freedom to see

Irregular Cornea

Ectasia displaced (mostly inferior), but

periphery still possible to fit

- Prevalence
 - All stages of Keratoconus
 - mild or early PMD

Classic GP Design (Scarring)

- CLEK Study 1994 2002 (1'209 PX)
 - 32% of flat fitted Px by eight years vs. 14% steep fitted
- Korb et al, 1982 (7 Px)
 - 57% flat vs. 0% steep after 12 month
- Maguen et al, 1983
 - 25% flat by 3 years had "significant staining"
 freedom to see

Keratoconus Case Report

- Case Report, CB, age 43, caucasian female
 - aspheric rotation symmetric GP design
 - Diameter 9.30

freed

Quadrant-specific Design

- The idea is to fit the lens in every quadrant as good as possible to the origin cornea curvature
 - Reducing pressure on the Apex of the Ectasia
 - Fitting the periphery is more important, than central K readings
 - The contact lens will click-in the peripheral cornea curvature

- Starting point of fitting is the steepest peripheral meridian
 - Goal is to allow the peripheral curve to click into the corneal curvature
 - If the fitting fails to reach alignment here, the lens will rotate and rock around flate meridian
- Identical concept like the peripher toric design

- K in each quadrant:
 - -0° 9.10mm
 - 180° 9.10mm
 - 90° 8.40mm

freedo

Fitting concept

- Rule of thumb for nE calculation
 - -0° and 180° = Square root of 2.50mm difference = nE 1.60 (6.60mm vs 9.10mm)
 - 90° = Square root of 2.50mm difference = nE 1.40 (6.60mm vs 8.40mm)
- Falco FKQ 16/16/14/00 BC 6.60 Diameter 10.80

- Perfect centration
- Outstanding comfort
- Fluorescein pattern: typical pooling in steep mid-periphery and alignment fit in periphery
- Markings of flat meridian and black coloured engraving in 270° leads Px during insertion

freedom to se

Advanced Ectasia
Ectasia extremely displaced, including the periphery
Prevalence

Advanced stages
Keratoconus
PMD

Scleral Lenses

- Perfect centration
 - Vaulting entire Cornea and Limbus
 - The lens rests only at the Scleral Zone
- Simplyfied Fitting
 - Sclerals are fitted by Sagittal Depth rather than BC or K readings
- Outstanding Optic Results
 - Flatter BC and bigger Optical Zone Diameter

Sclerals: Fitting Concept

- Topographie BC does not matter at all!!
- Sagittal Depth established by Trial lenses
 - Pentacam or OCT gives an idea which Sag willbe usefull
 - Anterior chamber evaluation gives an idea for Sag as well
- Cornea-Scleralprofil works as an indicator for scleral zone

Sclerals: Fitting Concept

- Diameter (Ø_t)
 - maximal 17.00mm / Trials are 16.00mm
 - Till Ø 16.50 Sclera is more or less regular for fitting, if going bigger, the sclera shows different curves in each quadrant

Study Pat Caroline, M.Sc. Kurs, Freiburg July 2010

- Limbal Region
 - Avoiding any Edema, by changing the Transition
 Zone between Optic and Scleral Zone

Sclerals: Peripher Toric

freedom to see

Paradigma Shift

- Mean Goal is to achieve alignment fit in the corneal periphery
 - Improve initial comfort
 - Reduce 3-9 o' clock staining, due to reduced mechanical pressure
 - Improve centration (reduce high / low riding)
 - Improve Visual outcome

Download:

http://www.kontaktlinsenstudio.ch/medien/medien_Frameset.htm

freedom to see

Michael Wyss

M.Sc. Optometrist FAAO kontaktlinsenstudio baertschi, Bern / Switzerland mwyss@kontaktlinsenstudio.ch