Retinal Venous Pressure and High Altitude

Michael Baertschi, PhD (Biomedicine), MScOptom, MmedEduc, FAAO, FEAOO

1st OBF Summit 2019

Disclosure

No commercial or financial interest

in any product named in this lecture.

Eyeness AG is or was a supported consultant, designer or lecturer for (in alphabetic order):

ALCON AG Vision Care APPENZELLER Kontaktlinsen AG BAUSCH & LOMB Inc. BOSTON Polymer Technology CIBA Vision COOPER Vision Inc. FALCO Linsen AG HAAG-STREIT AG GALIFA Contactlinsen AG GELFLEX Laboratories JOHNSON & JOHNSON Vision Care LHW FOUNDATION MEDICONSULT AG New England College of Optometry NECO SENSIMED SA

TECHCOLORS / Adventures in Colors

TISSOT Medical Research SA

Universitätsspital Basel USB

VIVIOR AG

What does retinal venous pressure have in common with (dead) mountaineers on extreme high mountains ?

- Universitätsspital Basel

SALUS Aim 1: Retinal Venous Pressure in Individuals Basel

in a Low Oxygen Environment (Hypobaric chamber)

SALUS Aim 1: Retinal Venous Pressure in Individuals - - Universitätsspital

in a Low Oxygen Environment (Hypobaric chamber)

Goal: To establish RVP in hypobaric (hypoxic) conditions of healthy subjects with and without Flammer Syndrome.

Method: Experimental, prospective cohort study

Statistics: Descriptive, ANOVA, linear mixed model

Population: 23 healthy subjects, 18-60yo

9x FS+ (39.1%) / 14x FS- (60.9%)

- Altitudes: 300m (980ft)/ 2500m (8'200ft)/ 4200m (13'780ft)
- Gender: 13 women (56.5%) / 10 men (43.5 %)

Mean age: 32.5 yo women / 41.0 yo men

Universitätsspital Basel

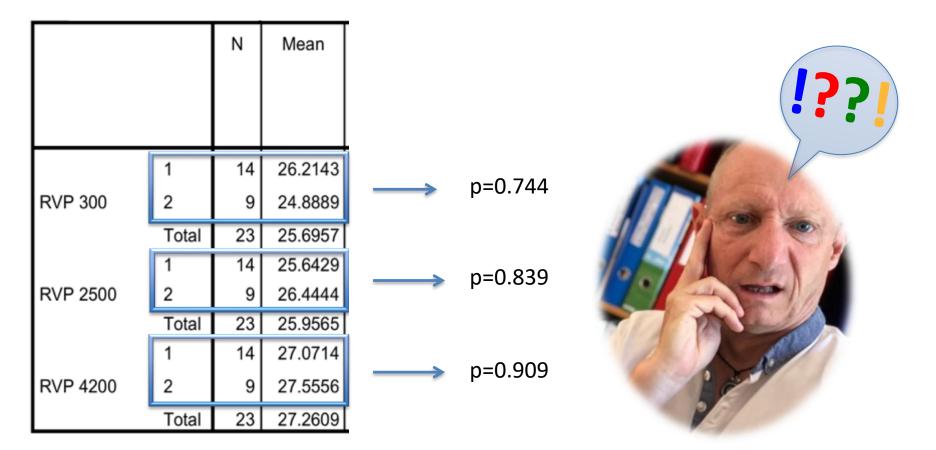
Intraocular Pressure, Oxygen Saturation, Pulse	and Blood Pressure at all Altitudes
--	-------------------------------------

		Ν	Minimum	Maximum	Mean	Std. Deviation
SO2 300 (%	%)	23	95	99	98.22	.951
SO2 2500 (9	%)	23		97	94.74	1.936
SO2 4200 (%	%)	23	61		84.65	6.603
Puls 300 (b	peat/min)	23	52	102	76.78	12.767
Puls 2500 (b	peat/min)	23	53	102	77.74	12.516
Puls 4200 (b	peat/min)	23	52	110	79.30	12.633
BP Sys 300 (n	nm Hg)	23	93	165	130.09	20.095
BP Sys 2500 (n	nm Hg)	23		162	131.65	19.144
BP Sys 4200 (n	nm Hg)	23	92	171	132.57	21.179
BP Dia 300 (m	nm Hg)	23	50	109	82.48	14.343
BP Dia 2500 (m	nm Hg)	23	60	108	86.52	13.608
BP Dia 4200 (m	nm Hg)	23	60	119	85.78	15.929
						ľ

Comparison of IOP in FS negative and FS positive Group

		Ν	Mean	Std.	Std.	95% Confidence Interval for		Minimum	Maximum
				Deviation	Error	Mean			
						Lower Bound	Upper Bound		
	1	14	16.9286	3.19770	.85462	15.0823	18.7749	12.00	23.00
IOP 300	2	9	14.3333	1.80278	.60093	12.9476	15.7191	12.00	18.00
	Total	23	15.9130	2.98349	.62210	14.6229	17.2032	12.00	23.00
	1	14	15.6429	3.71291	.99232	13.4991	17.7866	10.00	22.00
IOP 2500	2	9	14.6667	2.44949	.81650	12.7838	16.5495	11.00	19.00
	Total	23	15.2609	3.25042	.67776	13.8553	16.6665	10.00	22.00
	1	14	14.2857	3.64646	.97456	12.1803	16.3911	9.00	21.00
IOP 4200	2	9	14.8889	2.20479	.73493	13.1941	16.5836	13.00	18.00
	Total	23	14.5217	3.11696	.64993	13.1739	15.8696	9.00	21.00

- Group 1: Flammer Syndrome negative (- 2.65mmHg)
- Group 2: Flammer Syndrome positive (+ 0.55mmHg)



Universitätsspital Basel

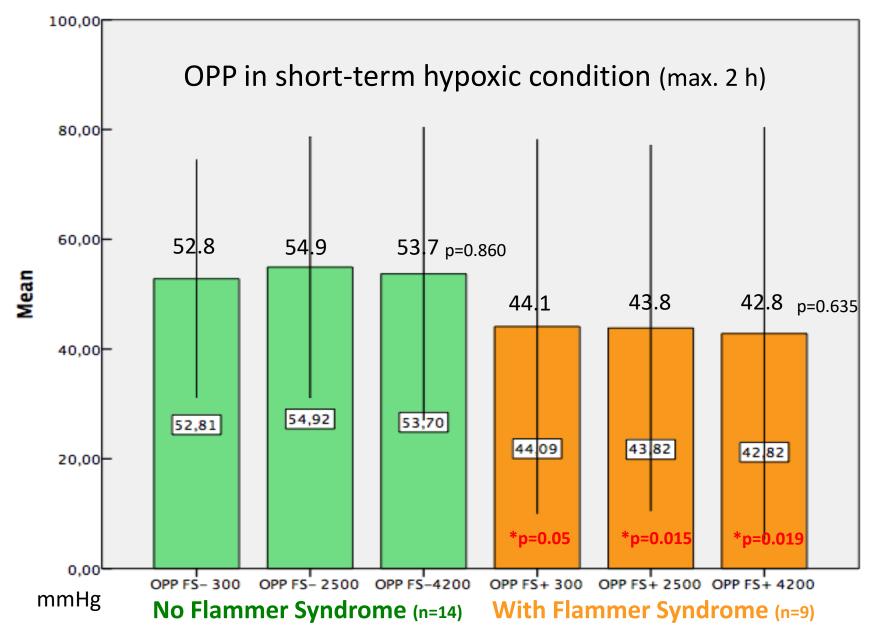
Comparison of RVP in FS negative and FS positive Group

Group 1: Flammer Syndrome negative (+0.9mmHg) Group 2: Flammer Syndrome positive (+2.6mmHg)

Universitätsspital Basel

Descriptive Statistics for Mean Arterial Pressure at different Altitudes

		N	Minimum	Maximum	Mean	Std. Deviation
	MAPFSneg300	14	82.00	128.00	103.5000	14.55361
	MAPFSneg2500	14	86.00	126.00	108.1429	12.57505
	MAPFSneg4200	14	78.00	130.00	108.2143	13.90174
	MAPFSpos300	9	65.00	107.00	90.2222	* 15.22972
(2)	MAPFSpos2500	9	70.00	108.00	91.4444	** 13.38013 **
-	MAPFSpos4200	9	72.00	112.00	90.8889	16.41984
	Valid N (listwise)	14/9				



* p=0.260

** p=0.038 / p=0.038

- Universitätsspital Basel

ALUS Discussion and Conclusion Aim 1

- Vital parameters such as oxygen saturation, pulse rate and blood pressure changed as expected. (Morganti et al. 1995)
- **RVP did not changed** significantly for both groups when confronted to hypoxia for less than 2h.
- MAP and OPP were significantly lower for the FS+ group at all altitudes.
- Further studies are needed to investigate MAP in FS+
- Effect of longer exposure time to hypoxia on RVP in general.

Mt. Everest, 8'848m/29'029ft, May 2013

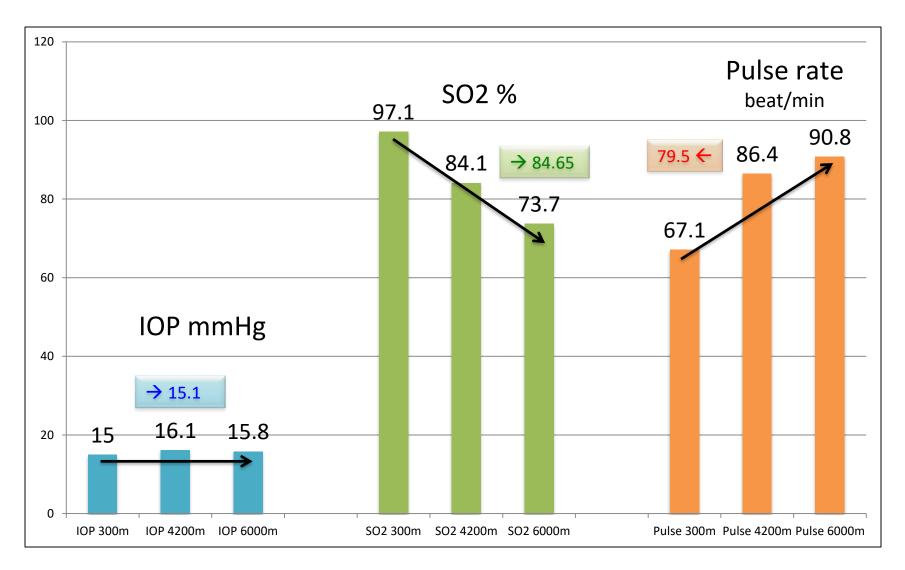
Aim 2: The influence of High Altitude to

Retinal Venous and Ocular Perfusion Pressure

- Goal:To establish RVP and OPP in long-term hypobaric(hypoxic) conditions of healthy subjects.
- Method: Experimental, prospective cohort study
- Statistics: Descriptive, ANOVA, linear mixed model
- Population: 31/33 healthy subjects, 18-60yo, FS-
- Altitudes: 300m (980ft)/ 4200m (13'780ft)/ 6000m (19'685ft)
- Mountains: Andes, Pamir, Karakorum, Himalaya
- Gender: 6 women (18.2%) / 27 men (81.8 %)
- Mean age: 43.8 yo women / 46.9 yo men

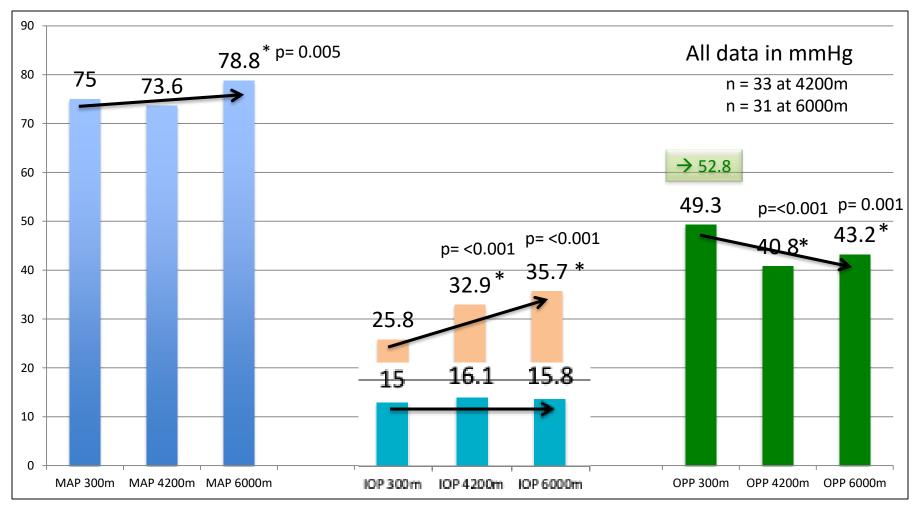
Aim 2: The influence of High Altitude to Retinal Venous and Ocular Perfusion Pressure

Aim 2: The influence of High Altitude to Retinal Venous and Ocular Perfusion Pressure


December 2011

IOP, SO2 and Pulse

at different altitudes (Hypoxia >24h) (n=33/31)



ocular MAP, RVP and OPP

at different altitudes (Hypoxia >24h) (n= 33/31)

IOP not equal RVP !

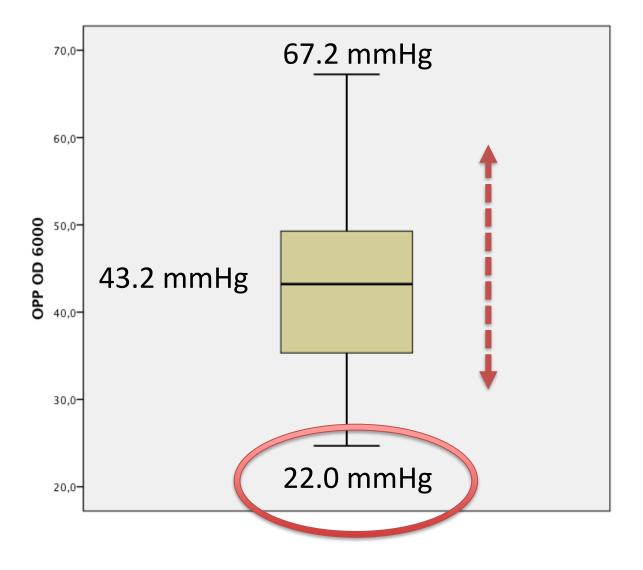
Epidemiology

Prevalence of Spontaneous Retinal Venous Pulsation in five major studies

	Healthy controls	POAG suspects	NTG	POAG	
Morgan et al.,	98%	75%		54%	100%
Ophthalmology, 2004;					
111(8): 1489-94 Harder and Jonas. Br J	89%				-
Ophthamol, 2007; 91(3):	0070				
401-02					
Legler and Jonas.	75%			64%	
Glaucoma, 2009; 18(3):					
210-12					50%
Seo et al.,		86%		53%	5070
Ophthalmology, 2012;					
119: 2254-60					
Abegao Pinto et al., Acta	82%		51%	50%	
Ophthalmol, 2013; 91(6):					
514-20					
Mean	86.0%	80.5%	51%	55.2%	
					0%

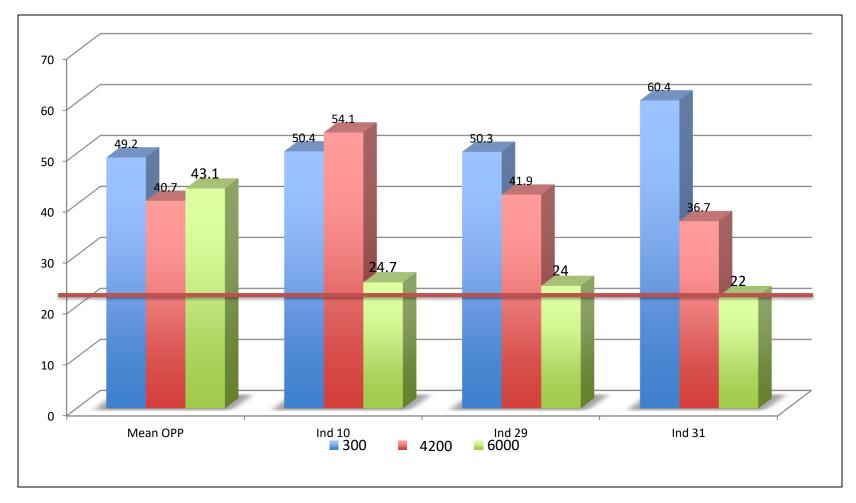
Calculation Perfusion Pressure - Universitätsspital

Ocular Perfusion Pressure (**OPP**) = 2/3 [**MAP***] - **RVP**


*MAP = Mean Arterial Pressure = BPdias + 1/3 (BPsyst – BPdias)

Ocular Perfusion Pressure

at 6000m (n=31)


Retinal versus choroidal blood flow

Tissue	Function and characteristics	Involved cell or fiber layer
Retina	Autoregulation e.g. Flicker, IOP/I	
	Low flow rate Endothelin-1	Optic nerve fibers
	Low perfusion rate	Ganglion layer
	Low venous oxygen saturation	Inner plexiform layer
	High vascular resista	Schmidl et al., 2011
	High oxygen extracti	
Choroidea	No Autoregulation	No Autoregulation
	No Autoregulation80Very high flow rate60High perfusion rate50Very high venous ox40Jow vascular resista30	
	High perfusion rate	Lower Limit of Upper Limit of Autoregulation
	Very high venous ox	Autore ulatory Plateau
	Low vascular resista	Avoregulation
	Low oxygen extractio	
	0	10 20 30 40 50 60 70 80 90 100
		Perfusion pressure (mmHg)

Very low OPP of selected subjects

Around Lower Limit of Blood Flow Autoregulation in Optic Nerve Head *

- Riva 1997 (22mmHg Humans), Riva 1996 (20mmHg Cat's)
- Schmidl 2011 (30mmHg Humans)

Discussion and Conclusion Aim 2

- Vital parameters such as oxygen saturation, pulse rate and blood pressure changed as expected. (Morganti et al. 1995)
- RVP increased significantly for all altitudes (<p=0.001)
- RVP reaction to hypoxia takes >2h but <24h.
- OPP decreased significantly for all altitudes despite the MAP increase. (<p=0.001)
- RVP and OPP varied among individuals.
- OPP levels could be as low as the lower limit of autoregulation at the optic nerve head. (Riva et al. 1996 and 1997, Schmidl 2011)

What does retinal venous pressure have in common with (dead) mountaineers on extreme high mountains ?

- Universitätsspital Basel

Answer:

The risk of becoming blind (or even to die) due to hypoxia

Take-Home Message

- 1. Retinal venous pressure (RVP) is an essential factor to establish the accurate retinal perfusion pressure.
- 2. RVP can be established precise, reproducible, quick and costeffective by Ophthalmo-Dynamometry.
- 5. Ocular perfusion pressure (OPP) of subjects with FS+ is lower than in subjects without FS.
- The physiological reaction of environmental hypoxia to RVP takes longer than 2 hours.
- 7. Constant environmental hypoxia increases RVP and lowers OPP despite an increase of mean arterial pressure MAP.

THANK YOU !

Broad Peak 8'051m/26'414ft, Pakistan, July 2018